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Abstract. While the study of trigonometry stemmed from the investigation of
triangles in the past, the development of “hyperbolic” trigonometry is different
and interesting. This paper summarizes the history of hyperbolic trigonom-
etry and presents several remarkable hyperbolic trigonometry identities that
have nice Euclidean counterparts. Lastly, we provide a couple of applications
to emphasize the importance of this topic that is not limited to theoretical
mathematics.
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1. Definitions and History

While hyperbolic trigonometry is the main focus of this paper, the study of this
topic is indeed originated from the study of the regular trigonometry, or what we
call the “circular” trigonometry. Then, it is important to recall what the circular
trigonometry is so that we can compare the two types of trigonometries.
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Figure 1. A problem of finding the length c given a, b and angle C.

1.1. Circular Trigonometry. The study of circular trigonometry started from
the study of triangles. A problem that mathematicians in the ancient time studied
was finding the length of the remaining side of triangle ABC, given we know sides
a, b and the angle C as shown in Figure 1. This kind of question then gave rise to
trigonometry notions for right triangles, which is the type of trigonometry we have
learned since high school. The followings are the main functions in trigonometry.

Definition 1.1. For any right triangle ABC in the Euclidean geometry with the
length of the side opposite to the angles A,B, and C denoted as a, b, and c and C
is the right angle, the functions sinA, cosA, and tanA can be defined as

sinA =
a

c
, cosA =

b

c
, and tanA =

a

b
.

Furthermore, we also define

cscA =
1

sinA
, secA =

1

cosA
, and cotA =

1

tanA
.

Figure 2. The right triangle model (left) and the circular model (right).

With Definition 1.1, mathematicians established a great collection of useful
identities that apply to both right triangles and any triangles in the Euclidean
geometry, such as the law of sines and the law of cosines. The example shown in
Figure 1 can, indeed, be solved by using the law of cosines.
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Notice that Definition 1.1 only allow the domain of functions sin and cos to be
positive and less than π. Thus, mathematicians use the unit circle x2 + y2 = 1 to
assist in extending the domain of both functions, as shown in Figure 2. Turns out,
we found the coordinates (cos θ, sin θ) for any real number θ lie on the unit circle.
From now on, we will refer to this regular trigonometry as circular trigonometry
to distinguish it from the hyperbolic one.

For the modern definitions, we usually refer to sin x and cosx by their Taylor
series expansions:

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
=
x

1!
− x3

3!
+
x5

5!
− x7

7!
+ · · · ,

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · · .

With some knowledge in complex analysis, namely, the Euler’s formula eiθ =
cos θ + i sin θ, one can easily verify that

sinx =
eix − e−ix

2i
and cosx =

eix + e−ix

2
. (1.1)

1.2. Hyperbolic Trigonometry. Unlike the study of circular trigonometry, the
origin of hyperbolic trigonometry did not start from the investigation of hyperbolic
triangles, but the following two functions.

Definition 1.2. Let sinh be the hyperbolic sine function and cosh the hyperbolic
cosine function, then sinhx and coshx can be defined as follow.

sinhx :=
ex − e−x

2
=
∞∑
n=0

x2n+1

(2n+ 1)!
=
x

1!
+
x3

3!
+
x5

5!
+
x7

7!
+ · · · ,

coshx :=
ex + e−x

2
=
∞∑
n=0

x2n

(2n)!
= 1 +

x2

2!
+
x4

4!
+
x6

6!
+ · · · .

According to Barnett [B], these two functions that define sinh and cosh,

ex − e−x

2
and

ex + e−x

2
, (1.2)

have been studied since the late 17th century when scholars tried to figure out the
model of catenary curve. (The problem of catenary curve will be discussed later in
this paper.) However, a mathematician that arguably made a huge contribution
to the study of hyperbolic trigonometry is Johann Heinrich Lambert, a Swiss
polymath. Lambert published one of his study on sin and cos functions in 1761,
and, in the same paper, he further studied the analogues of sin and cos which are
those two functions in (1.2). At that time, he did not give any special names to
the two functions, but he already noticed that the functions are tightly related to
the unit hyperbola x2 − y2 = 1.

In fact, around 1757 − 1762, Jacopo Riccati, a Venetian mathematician, had
also discovered that these two functions are connected to the unit hyperbola and
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named them “hyperbolic sine” and “hyperbolic cosine,” respectively. Unfortu-
nately, Riccati’s work is not as frequently mentioned as the one from Lambert due
to its difficult languages and notations.

1.3. The Unit Circle and the Unit Hyperbola. As mentioned in the previous
subsection, Lambert and Riccati noticed a nice connection between sinh, cosh and
the unit hyperbola. So we would like to note Lambert’s observation here.

Lemma 1.3. The coordinates (cosh θ, sinh θ) parametrize the positive unit hyper-
bola x2 − y2 = 1, (i.e., the branch in the right half plane.)

Proof. Consider the following computation,

cosh2 θ − sinh2 θ =

(
eθ + e−θ

2

)2

−
(
eθ − e−θ

2

)2

=
e2θ + 2 + e−2θ

4
− e2θ − 2 + e−2θ

4

=
4

4
= 1. (1.3)

Notice that cosh θ can be any real number in the range [1,∞), where cosh 0 = 1.
Thus, (1.3) implies that any point on the positive unit hyperbola x2 − y2 = 1 can
be parametrized by (cosh θ, sin θ) as desired. �

Figure 3. The area bounded by the curve of the unit hyperbola
and the line passing the origin and (cosh θ, sinh θ).

While this parametrization works out algebraically, one question that could arise
is what θ represents in this geometric view. Clearly, as there exist two asymptotes
that bound the unit hyperbola, namely, the lines x = y and x = −y, if θ were the
angle measured from the positive x−axis, the value of θ for sinh and cosh would
be limited to some range of real number. However, by Definition 1.2, θ can be any
real number, so its geometric meaning must be something else.
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Lemma 1.4. In fact, θ, the argument for sinh and cosh, represents twice of the
area bounded by the positive unit hyperbola, the x−axis, and the line passing the
origin and (cosh θ, sinh θ).

Proof. As in Figure 3, we can compute area A as follows

[area A] = [∆PQR]− [area under the curve]

=
sinh θ · cosh θ

2
−
∫ cosh θ

x=cosh 0

√
x2 − 1 dx

=
sinh θ · cosh θ

2
−
∫ θ

0

sinh2 θ dθ

=
sinh θ · cosh θ

2
−
∫ θ

0

e2θ − 2 + e−2θ

4
dθ

=
sinh 2θ

4
− sinh 2θ − 2θ

4
=
θ

2
.

Thus, θ is twice the area A as desired. �

While the fact that θ is proportionate to the area bounded by the unit hyperbola
is not very intuitive, it is not totally out of place as the analogue of Lemma 1.4
also appears in the circular model.

Lemma 1.5. The argument for sin and cos θ, represents twice of the sector
area bounded by the unit circle, the x−axis, and the line passing the origin and
(cos θ, sin θ).

Proof. Recall that the area of the unit circle is π · 12 = π and the angle around
the origin is 2π. Thus, the area of the sector is clearly

θ

2π
· π =

θ

2
.

�

Figure 4. Comparison between circular trigonometry and Hyper-
bolic trigonometry

In conclusion, the development of hyperbolic trigonometry is somehow opposite
to that of circular trigonometry. It started from the function (1.2) involving e.
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Then, mathematicians connected these two functions to the positive unit hyper-
bola and later used them to solve problems related to hyperbolic triangles as we
will see in §3. Before we move on to the next section, it is also worth noting that
the functions sinh, cosh and tanh are not periodic as shown in Figure 4.

2. Relationship between Circular and Hyperbolic Trigonometries

Now that we know the definitions of both trigonometries, it is natural to ask
whether there is any connection between them. However, it requires some tools
to help us understand their relationship, namely, the Poincaré distance and the
Bolyai-Lobachevsky Formula.

2.1. Poincaré Distance. First of all, we refer the following useful definition.

Definition 2.1. If P,Q,A, and B are distinct points in R2, then their cross-ratio
is

[P,Q,A,B] =
PB ·QA
PA ·QB

,

where PB,QA, PA, and B are the Euclidean lengths of those segments.

Then, we can use the cross ratio of four distinct points to find the Poincaré
length of a line segment.

Definition 2.2. If P,Q,A, and B are distinct points in R2, then in hyperbolic
geometry, the Poincaré length d(A,B) is defined as

d(A,B) = | ln([P,Q,A,B])|.

In particular, using Definition 2.1 and 2.2, we can find the Poincaré distance
from the origin to any point in the disk.

Figure 5. Poincaré distance from the origin.

Theorem 2.3. If a point B inside the unit disk is at a Euclidean distance x from
the origin O, then the Poincaré distance from B to O is given by

d(B,O) =

∣∣∣∣ln(1 + x

1− x

)∣∣∣∣ .
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Proof. This theorem can be easily proved by considering Figure 5. We set PQ
to be the diameter of the disk. We then know that the Euclidean distances of
PO = OQ = 1 and BQ = 1− x. Thus, by Definition 2.1, we have

[P,Q,O,B] =
PB ·QO
PO ·QB

=
1 + x

1− x
.

Then, by Definition 2.2, we obtain the desired result. �

2.2. Bolyai-Lobachevsky Formula. Before we talk about the remarkable for-
mula of Bolyai-Lobachevsky, let us recall some basic knowledge in the hyperbolic
geometry, namely, the angle of parallelism.

Recall that the axiom that distinguishes the Euclidean and hyperbolic geometry
is the fifth axiom regarding parallelism. For the Euclidean geometry, the axiom
states that for every line l and for every point P that does not line on l, there
exists a unique line m through P that is parallel to l. On the other hand, for
the hyperbolic geometry, there exist more than one line M that passes through
P and parallel to l. Thus, the existence of more than one parallel lines in hyper-
bolic geometry gives rise to the notions of limiting parallel rays and the angle of
parallelism.

Theorem 2.4. Given any line l and any point P not on l, there exist limiting

parallel rays
−→
PX and

−→
PY. Furthermore, the angle between the limiting rays and

the line through P perpendicular to l is called the angle of parallelism, which is
denoted as α in Figure 6.

Figure 6. The angle of parallelism.

The Bolyai-Lobachevsky formula is then a remarkable formula that connects
the angle of parallelism with the Hyperbolic distance from P to Q.

Theorem 2.5. Let α be the angle of parallelism for P with respect to l and d be
the hyperbolic distance from P to Q, where PQ is perpendicular to l. We then
have, the formula of Bolyai-Lobachevsky:

tan
(α

2

)
= e−d.

Proof. We first draw a tangent line of the circular arc at point P intersect QR at
S. In Figure 7, we denote x as the euclidean distance from P to Q, thus we have,
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by Theorem 2.3,

d =

∣∣∣∣ln(1 + x

1− x

)∣∣∣∣ =⇒ e−d =

(
1− x
1 + x

)
. (2.1)

Now, considering 4PSR, since PS and SR are two tangent lines intersecting at
S, PS ∼= SR. Thus, ∠SPR = ∠PRS = β and ∠PSR = 2β. Considering 4PQS,
we then have α + 2β = π/2, or α/2 = π/4− β.

We then apply the tangent rule to α/2 = π/4− β.
tan(α/2) = tan(π/4− β)

=
tan(π/4)− tan(β)

tan(π/4) + tan(β)

=
1− tan(β)

1 + tan(β)
.

To finish up the proof, we notice that tan(β) is indeed PQ/QR = x/1 = x.
Combining this fact with (2.1), yields the result. �

Figure 7. Proof of Bolyai-Lobachevsky formula.

Theorem 2.6. Lobachevsky denoted α or the angle of parallelism as Π(d) as α is
dependent on d. Then, an alternative form of the Bolyai-Lobachevsky formula can
be written as

Π(d) = 2 arctan(e−d),

which provides the radian measure of the angle of parallelism.

This alternative form gives us a clear link between hyperbolic and circular func-
tions, and, by manipulating the Bolyai-Lobachevsky formula, we obtain the fol-
lowing formulas.

Theorem 2.7. Let Π(x) be the angle of parallelism and x be the hyperbolic dis-
tance. Then,

sin(Π(x)) = sech(x) = 1/ cosh(x), (2.2)

cos(Π(x)) = tanh(x), (2.3)
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tan(Π(x)) = csch(x) = 1/ sinh(x). (2.4)

Proof. Since the proof for (2.2) and (2.3) can be done similarly and (2.4) follows
quite immediately, we then present only the proof of the first formula here.

Let y = arctan(e−d), then we have tan(y) = e−d. Thus, sec2(y) = tan2(y) + 1 is
equivalent to sec2(y) = e−2x + 1.

Then, we have

cos(y) =
1

(sec2(y))1/2
=

1

(e−2x + 1)1/2
.

Similarly, we also have

sin(y) = tan(y) cos(y) =
e−x

(e−2x + 1)1/2
.

Therefore, by the double angle formula, we obtain

sin(Π(d)) = sin(2y) = 2 sin(y) cos(y) =
e−x

e−2x + 1
=

1

ex + e−x
= sech(x).

�

As we can see, with some help of cross-ratio and the Bolyai-Lobachevsky for-
mula, we succeed in developing a nice connection between the circular trigonom-
etry and hyperbolic trigonometry functions.

3. Hyperbolic Trigonometry Identities

The name “hyperbolic trigonometry” does not only refer to the fact that coor-
dinates (cosh θ, sinh θ) fit nicely on the unit hyperbola, but also that hyperbolic
trigonometry functions, i.e., sinh, cosh, tanh, allow us to develop useful identities
in hyperbolic triangles. Just like the circular trigonometry identities, some hyper-
bolic trig identities only hold for right hyperbolic triangles while others work out
well for any hyperbolic triangles.

3.1. Identities on Right Triangles. Let us first introduce the most three com-
mon identities that hold for hyperbolic right triangles.

Theorem 3.1. Given any triangle 4ABC, with ∠C being the right angle, in the
hyperbolic plane. Let a, b, and c denote the hyperbolic lengths of the corresponding
sides. Then

sinA =
sinh a

sinh c
and cosA =

tanh b

tanh c
, (3.1)

cosh c = cosh a · cosh b = cotA · cotB, (3.2)

cosh a =
cosA

sinB
. (3.3)

While the proofs of these formulas are interesting and involving constructing
some figure in the Poincaré model, their Euclidean counterparts are even more
worth noting. In this section, we decided to focus mainly on simplifying these
identities under a certain set of assumptions.
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From the first part of (3.2), we can replace cosh a, cosh b, and cosh c by their
Taylor series expansions and obtain

cosh c = cosh a · cosh b
∞∑
n=0

c2n

(2n)!
=

∞∑
n=0

a2n

(2n)!
·
∞∑
n=0

b2n

(2n)!

1 +
1

2
c2 +

1

4!
c4 + · · · = 1 +

1

2
(a2 + b2) +

1

4!
(a4 + 6a2b2 + b4) + · · · .

When we consider the last equation under the assumption that triangle ABC is
sufficiently small, the higher order terms can be ignored. This is because with
small a, b and c, for large n an, bn, and cn grow much more slowly compared with
(2n)!. Thus, it leaves us with

c2 ≈ a2 + b2,

which resembles the Pythagoras theorem in the Euclidean geometry.
Similarly, for (3.1), under the same assumption, we also have that

sinA ≈ a

c
and cosA ≈ b

c
,

which are just the trigonometry identities on any right triangle in the Euclidean
geometry.

Hyperbolic Euclidean Difference

a = 4, b = 1 c = 4.45 c = 4.12 .33
a = 5, b = 2 c = 6.33 c = 5.36 .97
a = 6, b = 3 c = 8.31 c = 6.71 1.6
a = 13, b = 10 c = 22.3 c = 16.4 5.9
a = 25, b = 30 c = 54 c = 39.05 14.95
a = 40, b = 50 c = 89.3 c = 64 25.3

Table 1. Comparing the length of c in both geometries.

Table 1 clarifies what it means to be sufficiently small for a hyperbolic triangle
ABC. In particular, when we find the length of c in the hyperbolic geometry, we
require Formula (2.3) while, for the Euclidean geometry, we require the Pythagoras
theorem. Also, note that not every hyperbolic identities have nice Euclidean
counterparts. Here, there are no nice Euclidean counterparts for the second part
of (3.2) and (3.3).

3.2. Identities on Any triangles. Now, let us introduce more identities that
work nicely on any hyperbolic triangles.

Theorem 3.2. For any triangle 4ABC in the hyperbolic plane,

sinA

sinh a
=

sinB

sinh b
=

sinC

sinh c
, (3.4)

cosh c = cosh a · cosh b− sinh a · sinh b · cosC, (3.5)
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cosh c =
cosA · cosB + cosC

sinA · sinB
. (3.6)

Similarly, under the assumption of a sufficiently small triangle, (3.4) can be
reduced to the law of sines and (3.5) can be reduced to the law of cosines in the
Euclidean geometry.

In particular, for (3.5), we can replace cosh a, cosh b, and cosh c by their Taylor
series expansions and obtain

cosh c = cosh a · cosh b− sinh a · sinh b · cosC
∞∑
n=0

c2n

(2n)!
=

∞∑
n=0

a2n

(2n)!
·
∞∑
n=0

b2n

(2n)!
−
∞∑
n=0

a2n+1

(2n+ 1)!
·
∞∑
n=0

b2n+1

(2n+ 1)!
· cosC

1 +
1

2
c2 + · · · =

(
1 +

1

2
(a2 + b2) + · · ·

)
− (ab+ · · · ) · cosC.

Again, the higher order terms can be ignored under the assumption, giving us

c2 ≈ a2 + b2 − 2ab · cosC,

which resembles the law of cosines in the Euclidean geometry.
For (3.4), it is quite clear that those denominators sinh a, sinh b, and sinh c can

be reduced to a, b, c implying that

sinA

a
=

sinB

b
=

sinC

c
,

which is the law of sines. Lastly, the formula (3.6), despite its usefulness, does not
have a nice Euclidean analogue.

3.3. Comparison and Connection. Before we shift our focus to the applica-
tions of hyperbolic trigonometry identities, let us summarize all the identities and
interesting facts we have discussed in the following table.

Hyperbolic Euclidean

θ twice the area bounded by the curve twice the sector area

Pythagoras cosh c = cosh a · cosh b c2 = a2 + b2

Right 4 defs sinA =
sinh a

sinh c
, cosA =

tanh b

tanh c
sinA =

a

c
, cosA =

b

c

Law of sines
sinA

sinh a
=

sinB

sinh b
=

sinC

sinh c

sinA

a
=

sinB

b
=

sinC

c

Law of cosines cosh c = cosh a cosh b− sinh a sinh b cosC c2 = a2 + b2 − 2ab cosC

Table 2. Comparing hyperbolic trig identities and their Euclidean counterparts.
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4. Applications

When asking about the applications of hyperbolic trigonometry, the most com-
mon answer always involves a catenary curve, an old physics problem first solved
in the 17th century.

4.1. The Catenary Curve. The catenary curve refers to the shape of a flexible
inextensible cord that is hung freely from the two fixed point. The word “cater-
nary” was first used by Huygens in 1690, yet the study of the shape of such a
curve had been examined as early as the 15th century by da Vinci. One of the
most notable scientists like Galileo believed that the curve is parabola, but the
claim was disproved in the 17th century.

The catenary problem was widely discussed right after Jakob Bernoulli posed
it as a challenge in a 1690 Acta Eruditorum paper. Then, in June 1691, there ap-
peared three independent solutions given by Christian Huygens, Gottfried Leibniz
and Johann Bernoulli.

Theorem 4.1. The catenary curve can be described by the equation

y =
eax + e−ax

2a
=
cosh(ax)

a
,

where a is some constant depending on the cord.

As a matter of fact, at that time, the three solutions did not mention hyperbolic
functions or any other explicit function, but merely curve constructions. Hence,
while the study of catenary is connected to the hyperbolic trigonometry, it does
not serve as where the study of the hyperbolic trigonometry actually began.

In this paper, we present a modern proof of 4.1 from [P] which is much more eas-
ier than those offered by the three great mathematicians, thanks to the innovation
of differential equations and hyperbolic trigonometry.

Figure 8. The set up for Theorem 4.1.
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Proof. Let (x, y) be an arbitrary point on the cord, s the length along the arc of
the cord from the lowest point to (x, y), and wo the linear density of the cord, i.e.,
its weight per unit length.

Since the cord is assumed to be ideally flexible inextensible one, the tension T
is along the cord, thus along the tangent at any point when freely hung down.
Then, given T0, the tension at the lowest point, T , the tension at the point (x, y),
and w0s, the weight between the two points, we have

T0 = T cos θ,

w0s = T sin θ.

Dividing these two equations and setting a = w0/T give us tan θ = as =
dy

dx
.

Differentiating with respect to x, along with using the derivative of arc length,
yields

d2y

dx2
= a

ds

dx
= a

√
1 +

(
dy

dx

)2

. (4.1)

Then, substituting p = dy/dx transforms (4.1) into dp/dx = a
√

1 + p2, which
can be solved by separation of variables∫

dp√
1 + p2

=

∫
adx. (4.2)

The by solving the left and right hand side integral of (4.2), we obtain

ln(
√

1 + p2 + p) = ax+ c3 = ax,

as when x = 0, c3 can be solved to 0.
By doing some algebra, this gives us

p =
dy

dx
=
eax − e−ax

2
.

Lastly, by derivative of exponential function, we obtain the desired result

y =
eax + e−ax

2a
+ c4,

where c4 can be solved to 0 when x = 0. �

4.2. More applications. The catenary curve does not only appear in an ideal
cord, but also in architecture. Imagine that you have a free-standing arch, meaning
no outside supports, then the optimal shape to handle the lines of thrust produced
by its own weight is cosh(x). An example that is widely known is the dome of
Saint Paul’s Cathedral in England (see Figure 9), which has a cosh(x) cross-
section. Antoni Gaud́ı, a Catalan architect, also exploits this kind of arch in his
work.
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Figure 9. The dome of Saint Paul’s Cathedral in England.

Another place that the catenary curve appears is its corresponding surface of
revolution, the catenoid. This surface can be understood as the form that a soap
bubble takes when it is stretched across two rings as shown in Figure 10.

Figure 10. The Catenoid bubble.

Going beyond the catenary curve, the hyperbolic trigonometry functions are
widely used in mathematics and physics such as in the Mercator projection, a
technique used to create a map, and in velocity addition in special relativity, etc.
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